On The Effect of Vibration on Shape Sensing of Continuum Manipulators Using Fiber Bragg Gratings

نویسندگان

  • Shahriar Sefati
  • Farshid Alambeigi
  • Iulian Iordachita
  • Russell H. Taylor
  • Mehran Armand
چکیده

©2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. Abstract— Fiber Bragg Grating (FBG) has shown great potential in shape and force sensing of continuum manipulators (CM) and biopsy needles. In the recent years, many researchers have studied different manufacturing and modeling techniques of FBG-based force and shape sensors for medical applications. These studies mainly focus on obtaining shape and force information in a static (or quasi-static) environment. In this paper, however, we study and evaluate dynamic environments where the FBG data is affected by vibration caused by a harmonic force e.g. a rotational debriding tool harmonically exciting the CM and the FBG-based shape sensor. In such situations, appropriate pre-processing of the FBG signal is necessary in order to infer correct information from the raw signal. We look at an example of such dynamic environments in the less invasive treatment of osteolysis by studying the FBG data both in timeand frequency-domain in presence of vibration due to a debriding tool rotating inside the lumen of the CM.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Light Polarization-Assisted Sensing with Tilted Fiber Bragg Gratings

Tilted fiber Bragg gratings (TFBGs) are short-period gratings for which the refractive index modulation of the fiber core is angled by a few degrees with respect to the perpendicular to the propagation axis. They induce two kinds of light coupling: the self-backward coupling of the core mode at the Bragg wavelength and the backward coupling between the core mode and several tens of cladding mod...

متن کامل

Optimization of Bistability in Nonlinear Chalcogenide Fiber Bragg Grating for All Optical Switch and Memory Applications

We solve the coupled mode equations governing the chalcogenide nonlinear fiber Bragg gratings (FBGs) numerically, and obtain the bistability characteristics. The characteristics of the chalcogenide nonlinear FBGs such as: switching threshold intensity, bistability interval and on-off switching ratio are studied. The effects of FBG length and its third order nonlinear refractive index on FBG cha...

متن کامل

Respiratory function monitoring using a real-time three-dimensional fiber-optic shaping sensing scheme based upon fiber Bragg gratings.

An array of in-line curvature sensors on a garment is used to monitor the thoracic and abdominal movements of a human during respiration. The results are used to obtain volumetric changes of the human torso in agreement with a spirometer used simultaneously at the mouth. The array of 40 in-line fiber Bragg gratings is used to produce 20 curvature sensors at different locations, each sensor cons...

متن کامل

Distributed Sensing Over Meter Lengths Using Twisted Multicore Optical Fiber With Continuous Bragg Gratings

In this paper we review recent developments in multicore optical fibers with continuous gratings suitable for various distributed sensing applications including shape, temperature, strain and acoustic signals. We describe an integrated optical fiber assembly for shape sensing. Our shape sensor module consists of a length (>1m) of twisted multicore optical fiber with fiber Bragg gratings inscrib...

متن کامل

Multiple-Octave-Spanning Vibration Sensing Based on Simultaneous Vector Demodulation of 499 Fizeau Interference Signals from Identical Ultra-Weak Fiber Bragg Gratings Over 2.5 km

Multi-point vibration sensing at the low frequency range of 0.5-100 Hz is of vital importance for applications such as seismic monitoring and underwater acoustic imaging. Location-resolved multi-point sensing using a single fiber and a single demodulation system can greatly reduce system deployment and maintenance costs. We propose and demonstrate the demodulation of a fiber-optic system consis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1801.06953  شماره 

صفحات  -

تاریخ انتشار 2018